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The inherent flexibility of peptides and protein
fragments quantitized by CD in conjunction
with CCA+
Imre Jáklia and András Perczela,b∗

ECD spectroscopy is traditionally used for rapid, non-atomic level structure analysis of natural products such as peptides
and proteins. Unlike globular proteins, peptides less frequently adopt a single 3D-fold in a time average manner.
Moreover, they exhibit an ensemble of conformers composed of a multitude of substantially different structures. In
principle, both ECD- and vibrational circular dichroism (VCD)-spectroscopy are sensitive enough to pick up structural
information on these dynamic ensembles. However, the interpretation of the raw spectral data of these highly dynamic
molecular systems can be cumbersome. The herein presented Convex Constraint Analysis Plus method, or CCA+ for
short (http://www.chem.elte.hu/departments/protnmr/cca/), provides a unique opportunity for spectral ensemble analysis
of peptides, glycopeptides, peptidomimetics, and other foldamers. The precision and accuracy of the approach is presented
here through different peptide model systems. An interesting temperature and pH dependent folding and unfolding of a
miniprotein (e.g. Tc5b variant) is also described. Analysis of CD spectra sets strongly affected by solvent and ion type is
also introduced to account for severe environmental-induced structure influencing effect(s). The deconvolution makes always
possible the quantitative data analysis even when the interpretation of the deconvolution resulted in pure CD curves is complex.
Copyright c© 2009 European Peptide Society and John Wiley & Sons, Ltd.
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Introduction

UV or ECD spectroscopy is traditionally used for rapid, non-atomic
level structure analysis of peptides and proteins. For proteins their
secondary structure content is commonly estimated and their
structural changes are regularly monitored through ECD. Post-
experimental data analyzing methods are well established and
commonly used for the semi-quantitative interpretation of the im-
plicit structural information. On the contrary, for peptides the same
type of ECD-based structure elucidation suffers from inherent lim-
itations. Unlike globular proteins, peptides less frequently adopt a
single 3D-fold in a time average manner. Moreover, they exhibit an
ensemble of conformers composed of a multitude of substantially
different structures. Even longer polypeptides, miniproteins (e.g.
Tc5b [1,2], betanova [3], or cyclic oligopeptides present a 3D-fold
of increased dynamics detectable on several timescales of motion.
In principle, both ECD- and vibrational circular dichroism (VCD)-
spectroscopy are sensitive enough to pick up structures forming
these dynamic ensembles. However, the interpretation of the raw
spectral data of these highly dynamic molecular systems can be
cumbersome. Unlike for proteins, where the secondary structural
elements provided typical CD-reference curves are well defined, for
peptides a similar reference spectra arsenal is not yet uncovered.
Thus, for proteins by either using a preset ensemble of reference
CD curves (methods based on any linear combination type strat-
egy), or applying an in situ deconvolution, the way is opened for a
quantitative or semi-quantitative CD-based structure elucidation.
In contrast to the above, for oligo- and polypeptides, both the
conformational properties and the spectral features of the differ-
ent secondary structural elements are less uniform. In fact, they

are substantially different, presenting ‘distortions’ on a large scale.
Thus, it seems unlikely that any set of reference- or base-CD curves
determined a priori can accurately and uniformly be presented
and used for structural elucidation of peptides. The only general
solution is to apply an ‘in situ’ deconvolution on the spectral en-
semble of the investigated molecular system. In this way, one could
generate the right set of pure component CD curves, adequately
describing the spectral set of interest for analysis. The herein
presented Convex Constraint Analysis Plus method, or CCA+ for
short, provides a unique opportunity for spectral ensemble anal-
ysis of peptides, glycopeptides, peptidomimetics, foldamers, etc.
Besides their structural variability, temperature, solvent type, ionic
strength, temperature, etc. significantly influence their spectral
outcome. This is because there is no chance to present a uniformly
applicable pure CD curve set. However, such deconvolution type
analysis can handle complex problems and provide a quantitative
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1/A, H-1117, Budapest, Hungary. E-mail: perczel@chem.elte.hu

a Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös
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answer, even if some of the deconvoluted pure component CD
curves are hard or impossible to assign to structure(s).

Peptide chemists are continuously searching for foldamers
(e.g. type I β-turn, α- or 310-helix) which could result in
characteristic CD curves. Recently, Reed and Reed [4] reported
a set of reference curves (for the PEPFIT program) for nine typical
secondary structural elements based on carefully selected peptide
models. Among others [5–7], we also have made attempts at
finding peptide sequences which provide a single and time
average structure [8,9]. For example, cyclo[Gly-Pro-Ser(OtBu)-Gly-
Ava) turned out to be an excellent and almost ideal model for the
type I β-turn as analyzed by X-ray crystallography [10]. However,
even such a model which presents an ideal type I β-turn in
the solid state, in solution the very same molecule possesses a
conformational mixture as demonstrated by NMR-spectroscopy.
Thus, the recorded CD curve can hardly be attributed to the
type I β-turn reference CD spectrum. Moreover even these,
close to ideal molecular structures, are subjected to backbone
distorting ‘environmental’ effects, such as pH, ionic strength,
and intermolecular interactions. Because of these and additional
problems, the strategy of ‘hunting for rigid structural building
blocks’ should be altered and the approach suggested here
could to be taken. Namely, the in situ deconvolution and analysis
(see Materials and Methods Section) of the spectral data set of
relevance. As there is no universal CD spectral data set of foldamers
making up peptides in general, they should not be chased.

The first ECD analysis programs were made rather simple,
by using a command line interface according to the computer
environment available at that time ( [11,12] etc.). Nowadays
graphical interface for a user-friendly program is a requirement.
There are several ECD analyzer programs that run on a desktop
computer (DICHROPROT [13], CDNN [14], CDTool [15]) but
an increasing number of internet-based services also become
available (K2D [16], K2D2 [17], DICHROWEB [18]). DICHROPROT
[13], CDTool [15], and DICHROWEB [18], ACDP [19]). Some of
them integrate several command line based methods and utilities
for data manipulation. Several approaches were developed in
the past to analyze CD spectrum: ridge regression [20], singular
value decomposition [12,21], variable selection [22], locally
linearized model [23], cluster analysis [24], self-consistent method
[25–27], principal component factor analysis [28], neural network
[14,16,17,29,30], matrix descriptor [31].

The reference set obtained from such a deconvolution is again
not universal, but can provide a good description of the particular
set of CD curves, enough in most cases. The major drawback of
such analysis is that the resulting pure CD curves must be assigned
each and every time, based on their shape or by any additional
information (e.g. NMR data). Our CCA+ deconvolution algorithm
is quick and efficient to fulfill such a task and the user has a single
remaining task to complete, namely, the interpretation of the
out come. In this article, we are showing the performance of the
algorithm, the precision and accuracy of the approach taken as
well as its versatile nature. We are focusing here on the analysis of
CD spectra sets strongly affected by solvent and ion type. It will be
shown that deconvolution makes always possible the quantitative
data analysis, even when the interpretation of the pure CD curves
is complex or ambiguous.

Materials and Methods

Most spectrum analyzing methods are based on the simple
assumption called as the additivity rule (Eqn. 1), namely, that an

ECD spectrum can be calculated by summing up the contributions
of the different spectral properties:

ECD(λ) =
N∑

k=1

fkBk(λ) (1)

where ECD(λ) is the ECD spectrum as a function of the wavelength,
fk is the fraction of the Bk(λ) base spectrum. The constraints
are

∑
fk = 1 and fk ≥ 0. It is also assumed that different

secondary structure elements have a specific spectral shape. The
CCA deconvolution algorithm by Perczel et al. [11] minimizes the
following expression (2):
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where ECDm is the set of recorded ECD spectra (of N elements),
ECDc is the calculated spectral ensemble, determined from the
linear combination of Bi base curves each with fi,j coefficients. The
number of base curves (P) is an a priori parameter. The sum of
linear combination coefficients is:

P∑
i=1

fij = 1, where j = 1, 2, . . . , N (3)

and

fij ≥ 0, where i = 1, 2, . . . , P and j = 1, 2, . . . , N (4)

Because of the ‘convex’ boundary condition, during the
minimization, all fi,j coefficients should be within a minimal volume
of a simplex, defined by the base curves as vectors in the Euclidean
space. (Note that the simplex is a line segment in 1D-, a triangle in
2D-, and a tetrahedron in the 3D-space.) This method is very rapid
and provides a fully quantitative result. It can also depict rather
small spectral changes and it is able to monitor structural shifts
in a quantitative manner, just from the measured raw spectral
data (e.g. set of ion titration, temperature scans). The simplex is
used here in two contexts: (i) the simplex is considered as the
third restraint for minimization (beside those of Eqns. 3 and 4),
(ii) the ‘representation’ of the vector space defined by the ‘pure
component-spectra’ vectors. All analyzed ‘spectra’ as a ‘point’
should be within this simplex after minimization as determined
by the deconvolution process. The inherent properties of the
simplex are closely related to our convex boundary conditions:
If the corners are the pure/base components, then all points
within the simplex represent the linear combination of the pure
components, like in a barycentric view. The distance from the
corners will indeed provide the component percentages. If we
use this picture, the deconvolution process fits the simplex with
the smallest possible volume around all data ‘points’, the latter
ones defined by the spectra. When optimization completed, all
calculated points satisfy the convex boundary conditions.

The CCA+ program was written in Windows 32-bit SDK
development environment so it runs on desktop computers
using the Windows operating system. It implements features
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necessary for the data processing: input preparation, data import
and minimal data manipulation. Both the Linear Combination of
spectra (Lincomb) and the CCA+ method can be used for ECD
spectral analysis, whereas the test generator, an integrated part
of the program, helps the validation and benchmarking of the
algorithm.

The main screen has two fields: The upper part is the spectrum
window, whereas the lower part contains the list of spectrum or
result components. For CCA analysis, first an input set of spectra
(data matrix) has to be created by selecting spectra of choice.
Second, the appropriate method (CCA+) and the input parameters
should be set. The deconvolution procedure, which is an iterative
method lasting only for a couple of seconds, results in both the
calculated pure spectra (a set of Bi) and also their weights or
linear combination coefficients (fi,j) (Eqn. 2). To verify and visually
check the results, the originally recorded raw (ECDm) and the back
calculated (ECDc) spectra can be superimposed and presented in
the result file. A detailed help and a step by step tutorial helps the
user to learn the different features of the program as well as the
first steps of the deconvolution method. The current version of the
program is available free of charge via download, after registration,
from http://www.chem.elte.hu/departments/protnmr/cca/.

The first spectrum library composed CDs of a miniprotein,
namely, those of Tc5b-D9Aad. A total of 68 UV-CD spectra were
recorded in the temperature range of 5–85 ◦C (temperature
jump by 5 ◦C) at the following pH values: 2.5, 4.5, 5.5, and
6.5. As the original peptide of Neidigh et al. [1], that of Tc5b-
D9Aad (H-1NLYIQWLK-Aad-10GGPSSGRPPP20S-OH also exhibits
a composition of different secondary structural elements (Aad
stands for α-amino adipic-acid replacing Asp9 of the original
sequence.) Owing to its relatively small size, it can easily be
thermodenaturated especially at lower pH. This example stands
for longer polypeptides having a compact structure at lower
temperature, losing it relatively easily at increased T.

Most peptides could contain shorter fragments of different
secondary structural elements, such as short α- or 310-helices,
β-sheets (e.g. β-nova peptides [3]) and hairpins (e.g. SETE [32–34]).
Typically, the shorter the sequence the larger its flexibility and
plasticity is. One particular secondary structure often adopted
by shorter sequences is β-turns of different type. In the second
example, we are presenting a set of peptide sequences which form
different β-turns (type I, type II, etc.) in form of conformational
equilibrium, easily influenced by their amino acid composition
[9,35,36] and by the solvent used: water (H2O), trifluoroethanol
(TFE), and acetonitrile (CH3CN or ACE). The dielectric constants
of TFE and CH3CN are relatively low and somewhat mimic the
molecular environment β-turns buried in the core of a larger
protein. However, H2O with ε ∼78 (at 25 ◦C) can stand for turns
located on or close to the surface of a protein. This spectrum
library contains a total of 88 spectra of 30 different linear and
cyclic oligopeptides (Table 1). The size of the model compounds
varies from three to six amino acid residues, both linear and
cyclic model peptides were introduced, with polar and apolar side
chains.

β-turn model peptides introduced above can specifically and
aspecifically bind metal ions. Especially aspecific ion binding
of backbone carbonyls introduced conformational shifts are of
general interest, as they may occur at any circumstance. In our third
example, we are presenting data on the effect of the ion binding of
β-turn sequences. Besides the biologically most common Ca2+ , the
influence of the Al3+ ions on the conformation is also studied. The
latter ion, Al3+, is often claimed to be involved in the aggregation

of some neuropeptides connected to Alzheimer disease [37]. This
peptide library contains both four pseudo cyclo-hexapeptides,
namely, cyclo[(δ)Ava-Gly-Pro-Xxx-Gly] where Xxx=Ser, Ser(OtBu),
Thr and Thr(OtBu), and additional model systems of interest: cyclo
[Pro-Ala-(ε)Aca], cyclo [Pro-Ala-(ε)Aca-Pro-Ala-(ε)Aca] [10,35,36]. A
total of 73 CD curves were recoded in the 185–260 nm spectral
range, using physiologically relevant 1–5 equivalent (IPP) ion
concentration in a low dielectric media (TFE).

Results and Discussion

Precision and Accuracy

To show the efficiency of the algorithm for structure elucidation of
dynamic peptides, first we are to demonstrate its performance on
controlled data sets. Based on the additivity rule (Eqn. 1), we have
generated ‘controlled’ CD data sets using the linear combination
of typical CD spectra. These controlled spectral ensembles are
realistic in the sense that both the shape of the component CD
curves and their weights are similar to those of peptides and
proteins. Nevertheless, they are labeled as ‘controlled’ ones as
we know a priori the outcome of the analysis, as ‘mixing’ was
completed in a controlled manner. Using the four CD curves of
Poschner et al. [38], namely, that of α-helix, β-sheet, general β-
turn, and unordered, provided in the peptide training set created
for CDNN [14], we can generate any ‘controlled’ set of peptide
CD libraries (Figure 1). Following the deconvolution one has to
check, both the spectral properties of the resulted in base curves
by correlating them with those of Poschner’s, as well as the
similarity of the deconvoluted spectral weights with those set
initially (Figure 2). (Very similar tests were previously carried out
successfully for proteins [11,39].)

The benchmark test for peptides was completed for two
different types of CD data sets, but for both cases the Poschner’s
four pure component CD curves were used. The differences
between the two runs are in the manner how the spectral
coefficients are generated initially. During the first one (hereafter
referred as random), weights of each spectrum have been selected
in a completely independent and random way and subsequently
normalized to make the sum of them equal to the unity.
However, according to the second protocol, the weight of one
of the four components was ‘enhanced’ (from herein we use
the terminology enhanced) in the following way: this weight
(f1) was selected randomly between 0% and 100%, while that
of the second one between 0% and (100 − f1)%, etc. Thus, the
maximal value of the forthcoming components (fn) can only
be (100 − ∑n−1

k=1 fk)%. Generating the conformational weights
according to the second ‘randomizing protocol’, one selected
component is clearly enhanced. To make all components equally
‘preferred’, components were randomly reshuffled. To make the
difference visible between the two ‘random selection’ strategies,
two data sets of 20 spectra were made visible on 3D-barycentric
plots (note the difference in ‘dot’ distribution on Figure 3a and
c). The very pure components are located at the corners of
these tetrahedrons (Figure 3b), whereas a dot inside the simplex
corresponds to the actual weights used for linear combination
of the component pure CD curves. The mixing coefficient is the
distance of a point from the plane opposite of a corner.

The spectral set generated according to the first so-called
random manner stands for the very ‘realistic’ situation, namely,
where neither the pure component spectrum nor its ‘close
neighbor’ is explicitly among the curves to be deconvoluted.

www.interscience.com/journal/psc Copyright c© 2009 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2009; 15: 738–752
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Table 1. Deconvolution resulted in component percentage (all values in %) of the CD curves of both linear and cyclic peptide models, recorded in
water (H2O), acetonitrile (ACE), and trifluoroethanol (TFE)

Peptidea H2O TFE ACE

Rndb βI-III β-II βIII-I Rndb βI-III β-II βIII-I Rndb βI-III β-II βIII-I

Ac-Pro-Ser-NHMe 42 5 34 19 35 7 36 21 29 9 45 18

Boc-Ile-Thr-NHMe 27 3 47 23 26 2 41 31 25 1 39 36

Boc-Leu-Thr-NHMe 22 1 51 27 25 1 46 28 23 1 42 34

Boc-Pro-Asn-NHMe 33 4 46 18 27 0 36 37 28 3 31 38

Boc-Pro-Asp-NHMe 33 5 44 19 33 5 31 30 28 5 40 27

Boc-Pro-Gln-NHMe 33 3 47 17 29 2 41 28 31 3 37 29

Boc-Pro-Glu-NHMe 32 2 47 19 30 3 40 27 28 5 41 26

Boc-Pro-Ser-NHMe 33 2 46 19 29 3 45 23 26 4 45 25

Boc-Pro-Thr-NHMe 34 1 46 18 33 3 39 25 30 3 41 26

Boc-Val-Asn-NHMe 24 0 61 15 – – – – 21 2 34 43

Boc-Val-Asp-NHMe 23 2 46 28 27 3 36 34 23 3 38 35

Boc-Val-Gln-NHMe 29 2 51 18 25 1 45 29 24 1 49 27

Boc-Val-Glu-NHMe 31 2 46 21 24 2 47 27 31 5 39 25

Boc-Val-Ser-NHMe 29 2 46 23 25 2 48 26 24 2 46 29

Boc-Val-Thr-NHMe 29 3 44 24 26 1 43 29 25 0 40 35

Piv-Pro-Ser-NHMe 41 3 37 19 30 3 46 22 30 1 51 17

Average: 31 2 46 21 28 3 41 28 27 3 41 29
Standard deviation: 5 1 6 4 3 2 5 4 3 2 5 7

Boc-Pro-D-Ser-NHMe 16 1 74 9 18 5 76 2 10 5 84 1

Boc-Val-D-Ser-NHMe 14 2 78 6 14 3 79 4 13 3 84 0

Average: 15 2 76 8 16 4 77 3 12 4 84 0
Standard deviation: 2 1 3 2 3 1 2 1 2 2 0 1

Cyclo[Pro-Ala-Aca] 8 40 24 27 0 33 33 34 4 35 36 24

Cyclo[Pro-Ser-Aca] 12 25 42 21 19 7 57 17 15 19 48 17

Cyclo[Pro-Ser(OBzl)-Aca] 14 36 35 15 10 33 42 15 11 39 45 6

Cyclo[Pro-Thr-Aca] 20 37 0 43 – – – – 21 31 3 45

Cyclo[Pro-Thr(OBzl)-Aca] 10 40 47 3 0 55 45 0 5 35 55 5

Average: 13 36 30 22 7 32 44 16 11 32 37 19
Standard deviation: 5 6 19 15 9 20 10 14 7 7 20 16

Cyclo[Gly-Pro-Ser-Gly-Ava] 25 2 58 15 34 7 41 18 36 8 43 14

Cyclo[Gly-Pro-Ser(OtBu)-Gly-Ava] 27 9 40 25 41 4 42 14 52 6 22 20

Cyclo[Gly-Pro-Thr(OtBu)-Gly-Ava] 30 11 38 22 41 4 40 16 57 0 21 23

Average: 27 7 45 21 39 5 41 16 48 5 29 19
Standard deviation: 2 4 11 5 4 2 1 2 11 4 12 4

Cyclo[Pro-Ala-Aca]2 41 12 25 22 30 15 27 29 61 16 0 24

Cyclo[Pro-Ser-Aca]2 36 16 24 24 30 12 39 19 39 15 21 24

Cyclo[Pro-Ser(OBzl)-Aca]2 46 34 17 4 59 33 0 8 43 38 19 0

Cyclo[Pro-Thr(OBzl)-Aca]2 55 19 20 7 57 22 12 9 49 17 16 18

Average: 44 20 21 14 44 21 19 16 48 22 14 16
Standard deviation: 8 10 4 10 16 9 17 10 9 11 10 11

The molecules are sorted into five groups (from up to down): linear polypeptides, D-amino acid containing linear models, 4-, 6-, and 8-member ring
containing cyclic peptides. The average and the standard deviation of the component percentage for each molecule group are reported (figures with
bold and italic face).
a For model selection, see refs 9,35,36.
b Rnd; atypical or unordered structure, βI-III; the sum of type I and III β-turns, βII; type II β-turn content, βIII-I, the sum of type I and III β-turn
component.

Clearly in this case all points are located nearby the middle part
of the tetrahedron (see Figure 3a). On the contrary, spectral data
set generated by the ‘enhanced’ approach results in a close to
‘ideal’ spectral ensemble to be deconvoluted, as among the CD
curves one or more of the pure CD components are present. (Note
that one or several points are located nearby the corner(s) of the

simplex (see Figure 3c). For most highly dynamic peptides, a CD
spectral set resembling to the former case is expected to occur, at
any conditions.

One clear goal of such a test run is to determine the total
number of CD spectra, N, required for a successful deconvolution
(Figure 2). (Success is reported in terms of R2.) We have completed

J. Pept. Sci. 2009; 15: 738–752 Copyright c© 2009 European Peptide Society and John Wiley & Sons, Ltd. www.interscience.com/journal/psc
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Figure 1. The construction of a typical element of the ‘controlled’ data set: (a) The four base-CD curves of Poschner et al. [38], used here to generate this
data set. (b) Representation of the four mixing coefficients (f1j, f2j, f3j, and f4j, j = 1-N) in a tetrahedron/simplex. (c) The four base-CD curves multiplied
by these four mixing coefficients. (d) Summing up these base curves provides a CD spectrum (solid line) of the ‘controlled’ data set. The deconvolution
resulted in appropriate CD curve (dashed line). This figure is available in colour online at www.interscience.wiley.com/journal/jpepsci.
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Figure 3. Graphical representation of three sets of component percentages, by using tetrahedral plots (created with CSpace [40]), all for a spectrum
ensemble composed of 20 CD curves. First tetrahedron (a) contains a completely random coefficient selection, the second one (b) contains
coefficients recommended by Poscher et al. [38], the last (c) represents a pure component ‘enhanced’ set. This figure is available in colour online
at www.interscience.wiley.com/journal/jpepsci.

runs from N = 15, 20, 25, etc. up to 200. (This means, that by taking
Poschner’s four pure CD curves and by generating suitable weight
coefficients, a total of 15, 20 25, etc. spectra containing data sets
were generated and subsequently deconvoluted.) For error and
statistic purposes, data generation was repeated five consecutive
times, both for the ‘random’ and for the ‘enhanced’ cases. Finally,
a single data set containing 20 ‘controlled’ CD spectra was also
calculated not randomly, but by using the coefficients reported by
Poschner et al. [38] (Figure 3b). (We hereafter refer this test run as
‘CDNN’, as this input data are the same as the one used as training
set for the CDNN program of Poschner et al. [38].) As mentioned
earlier, the success of the ‘run’ is measured by the similarity of the
initial and of the deconvoluted weight matrices, reported in term
of Pearson correlation coefficient: 0 ≤ R2 ≤ 1.

By plotting the Pearson correlation coefficients against the
number of individual CD curves (N) (Figure 2) show that if N is
large enough (N > 100), then R2 reaches 1, reporting the perfect
identity of the generated and deconvoluted spectrum weights.
(As five parallels, for all data sets were deconvoluted, the average
R2 values with their standard deviations are plotted (see error
bar on Figure 2). Even though both data generation techniques,
random and enhanced, result in a successful deconvolution at
‘high’ N, the way of their convergence to 1 is different. For
datasets where special emphasis ensures that nearby regions
of the ‘corners’ or in other words close to pure component
curves are among the spectra to be deconvoluted (Figure 3c), full
success is obtained at N∼30 and above (black line in Figure 2).
Thus, in such a fortunate situation, where, for example, the
CD curve of a pure secondary structural element is explicitly
present in the spectral ensemble, deconvolution can be completed
even by using a few CD curves only. However, as there is no
foolproof method to determine in advance whether such a ‘lucky
situation’ holds, as described above data were generated for
the less advantages cases, called as the fully random situation
(dashed lines in Figure 2 and Figure 3a). Clearly, the algorithm
succeeds even in this case, however, it requires many more CD
spectrum to be used for ‘extraction’. As we see in the Introduction
section, peptides are typically conformationally flexible entities,
thus exhibiting multiple conformers in a time average manner.
Therefore, their CD curve typically reflects to a conformational
mixture and thus, very different conditions (T, pH, co-solvent, ionic
strength, etc.) should be probed and a large set of different CD
curves should be assembled for a successful analysis. (Here the
name ‘random’ reflects to the uncertainty of knowing whether

the pure component curve is among the CD curves to be
analyzed.)

Finally, in a ‘random’ data set there is a chance, that nearby the
corners of the simplex no dots are localized. Thus, the calculated
simplex cannot unambiguously be restored, especially if N is too
small (Figure 2). For example, for the ensemble of 20 ‘controlled’
spectra, the average R2 varies strongly, depending on which data
generation method is used. For the ‘enhanced’ case R2 = 0.963
and for the ‘CDNN’ peptide training set, R2 = 0.946, deconvolution
is completed well. However, for the ‘random’ method generated
test set R2 is significantly lower; 0.789. However, even in the latter
situation it is not the CCA+ algorithm which is performing less well,
but the nature of the data set makes unable to ensure a perfect
deconvolution! In this case, there are many different possibilities
to fit the simplex on the dots, among which some fit resembles
more (higher R2) and some less to the original one (cf. the high
error bar at N = 20 gray line Figure 2). Nevertheless, by increasing
the number of CD curves R2 increases and around N = 70 R2 goes
above 0.9! There is no guarantee that the increase in size of the
dataset will help in general, but there is a chance that as for the
test case in a real world one can find such a condition, where pure
component(s) could become prevalent.

In practice, the CCA+ method can be used for analyzing ECDs
and VCDs of peptides with high confidence. However, as for most
cases the close to ‘ideal’ situation will not hold. Thus, it is strongly
recommended to use spectral data set as large and as diverse
as possible. Fortunately, the algorithm is powerful enough to
complete deconvolution fast, within few seconds even for data
sets comprising few hundred of individual CD curves. The hereafter
examples shows how deconvolution can be completed for real
cases and how the analysis of flexible peptides can be used for
structure elucidation.

Peptide Spectrum Libraries

It is understood [1] that even shorter polypeptides, which can
adopt self-interacting secondary structural elements, and thus
can shield hydrophobic resides in their core, could be called
as proteins. These miniproteins, especially those not containing
disulfide bonds, look ideal molecular systems for testing thermo-
and pH-stability of foldamers. As our first case, the ECD spectrum
library of miniprotein Tc5b-D9Aad is analyzed. A total of 68
CD spectra were recorded spanning a broad temperature and
pH range (from 5 ◦C to 85 ◦C) and pH (2.5, 4.5, 5.5, and 6.5),
to decipher its fold stability. Following the deconvolution, the
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spectral ensemble (Figure 4) (see Materials and Methods) seems
to contain only two distinct spectral components (Figure 5).
Monitoring their interconversion as function of pH and T can help
us to quantitatively monitor the complex procedure of folding
and unfolding of Tc5b-D9Aad. Although it is known from our NMR
structural data (to be published) that this miniprotein contains
perhaps three different secondary structural elements (e.g. α-
helix, 310 helix, poliproline-II [PPII] and unordered), due to the ECD
spectral similarity of the first and of the second two categories, the
analysis by using two pure components holds.

The first pure component curve (Figure 5) can be attributed to
the ‘unordered’ or dynamically averaged ECD curve, in conjunction
with PPII. The second component corresponds to the ‘ordered’
contribution, dominated in this miniprotein by the α-(a total
of 7–9 residues) and by the 310-(3–5 residues) helices. The
continuous interconversion between the 2-folded states can
be monitored by CCA+. At low temperature (T = 5 ◦C) and at
physiological pH (pH = 6.5), the miniprotein is folded the most.
As expected, with the increase of the temperature the relative
contribution of the ‘disordered’ part increases monotonically
(Figure 6) up to approximately 80%, signaling that at increasing
with T the miniprotein continuously unfold. Furthermore, the
same miniprotein shows a clear stability decrease with pH. It is not
yet fully uncovered, whether only the Aad9. . .Arg16 salt bridge is
weakened by dropping the pH, or additional structural factors also
play in a role. Nevertheless, at pH approximately 2.5 Aad becomes
protonated, the 310-helix stabilizing salt bridge vanishes, and thus

the ‘disordered’ spectral contribution becomes higher (∼50%)
even at a lower temperature (5 ◦C). At low pH, due to the lack
of the above described salt bridge at elevated temperature (e.g.
50 ◦C) the contribution of the ‘disordered’ structural part becomes
dominant (>90%). In conclusion, the Trp-cage miniprotein stability
depends both on temperature and on pH. As a consequence of
it, the ‘disordered’ spectral contribution can remain relatively
low, <50%, even at 50 ◦C. Note taking advantages of the CCA+
protocol, only by simply looking at the raw ECD curves (Figure 4),
it is harder to find out and quantify such stability range, now
clearly depicted by the deconvolution. However, one has to bear
in mind that by enlarging the CD data set, with the introduction
of more models or additional factors the same molecular picture
could be altered, but the semi-quantitative conclusion will remain.
Finally, if we tried to monitor the same spectral change by using,
for example, the K2D2 program [17], we can detect only a 10–15%
change in theα-helix and in theβ-sheet content of the miniprotein.
(As K2D2 program warns us, that ‘the distance is too big’, really
it cannot be used with high confidence to complete such an
analysis.) Interestingly enough, the use of the Lincomb module of
our CCA+ program, in conjunction with the peptide reference data
set of PEPFIT program [4] seems to be a better choice. However,
the analysis of the linear combination component percentages
provides a less pronounced answer.

Oligo- and polypeptides often adopt mixtures of turns and loops
as secondary structural elements. As these sequences present
only residual structural preferences, as they are conformational

Figure 4. The ECD spectra ensemble measured at pH 2.5, 4.5, 5.5, and 6.5 in the range of 5–85 ◦C for Tc5b-Aad miniprotein. (A total of 68 somewhat
different spectral conditions were established and jointly analyzed to decipher inherent conformational properties of the present miniprotein).
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ensembles, there is a low chance to obtain any of the component
structures in its pure form. Instead, by altering their amino acid
composition, their size and sequence length and by varying their
molecular environment (by changing the solvent), the relative
ratio of the residual secondary structural elements can be shifted.
By recording CD spectra of these models as function of the above
variables, a large spectral set can be obtained and deconvoluted.
The second data set, which comprises several linear and cyclic
oligopeptide models of different ring size, most of them recorded
in three different solvents was analyzed. Results interpreted here
is the one where four pure- or base component curves (Figure 7)

were extracted. (Deconvolution completed with five component
curves provides hardly interpretable base curves, while that of
three or less base component curves results in a poor description
of the spectral ensemble.) The first pure CD spectrum extracted
has a ‘U-shape’ and conventionally assigned to the so-called
unordered or unstructured component (Figure 7). (Its shape is
slightly distorted at lower frequency, probably because of the
presence of D-amino-acid residues within the models.) The second
and the fourth pure CD component curves were assigned to the
sum of the type I plus III β-turns. As the backbone torsion angles
of the latter two types of β-turns are similar, their CD curves,
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JÁKLI AND PERCZEL

-150

-100

-50

0

50

100

150

200

185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260

Wavelength (nm)

[Θ
] x

 1
e-

3 
(d

eg
 c

m
2 

dm
ol

-1
)

1st comp
2nd comp
3rd comp
4th comp

Figure 7. Deconvolution resulted in base curves of the linear and cyclic peptide data set measured in acetonitrile, trifluoroethanol, and water. (Legend:
♦-first component: non-typical spectrum, �-second component: C-type spectrum of type I or III β-turns, �-third component: type II β-turn, ×-fourth
component: another C-type spectrum for type I or III β-turns).

-80

-60

-40

-20

0

20

40

60

185 195 205 215 225 235 245 255

Wavelength (nm)

[Θ
] x

 1
e-

3 
(d

eg
 c

m
2 

dm
ol

-1
)

1st comp - class B spectrum 

2nd comp - non typical
3rd comp - class K spectrum
4th comp - class C spectrum

Figure 8. Base curves obtained from the Ca2+ and Al3+ ion titration of cyclic β-turn models. (Legend: ♦-first component: class B spectrum [41], �-second
component: non-typical, �-third component: class K spectrum [42], ×-fourth component: class C spectrum [41]).

both of type C according to Woody et al. [41] are also of great
similarity. (The spectral properties of the second and of the fourth
pure component CD curve are alike, but the former one is blue-
shifted.) The third pure component resembles to a type B CD curve,
typically associated with type II β-turns [41], predominant for D-
residue containing models. Based on the structural vicinity of the 30
different peptides jointly analyzed here, the following subdivision
was made: linear peptides, linear peptides with a D-amino acid
residue plus four-, six-, and eight-residue long cyclopeptides. (For
all these five structural categories both the ‘average’ component
contribution (%) and their standard deviations were calculated
and reported (Table 1.) Based on our deconvolution completed
at three different solvents, the following general conclusions can

be drown: (i) As expected, all linear and cyclic models exhibit
conformation ensembles of regular β-turns and unstructured or
highly flexible backbone folds. (ii) For the L-amino acid containing
linear models, the contribution of the type II β-turn structure is
higher (41–46%) than the sum of type I and III β-turns (24–32%)
and does not change with the solvent. The relative contribution
of the atypical or ‘unordered’ component is in between the two
(27–31%). Surprisingly, the weight of the fourth pure component
curve, associated with the relative percentage of type I (III) β-turns
is modest (25 ± 4%) even though sequences such as Pro-Ser, Val-
Asp are believed to enhance type I (III) β-turn formation. (iii) In the
second category, where a D-amino acid residue is introduced into
the (i + 2)-position of the model, -Pro-D-Ser- and -Val-D-Ser-, as
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expected the relative conformational weight of the type II β-turn
became predominant; 76% and further increases (84%) as the
dielectric constant of the solvent decreases. The conformational
contribution of type II β-turn in these models was estimated by
NMR to be around 80% [8]. (iv) As expected, the tightest ring
containing cyclo-pseudo-tetrapeptides (cyclo[Xxx-Yyy-Aca]) have
the lowest unstructured content: 10 ± 3% at all three solvents. As
detected by CD, in the conformational equilibrium of these tight
systems, the contribution of the type I (III) β-turn (the sum of the
second and fourth component curves Figure 7) is high: ∼48–58%,
the highest in H2O. However, even at such a tight ring size a low
but significant amount of type II β-turn is present at any solvent
as also described based on NOEs [9]. (v) Further enlargement
of the ring size has a marginal effect; (4–6; cyclo[Gly-Pro-Xxx-
Gly-Ava]) the conformational ensemble remains with the slight
dominance of the type II β-turn. (Note that in the solid state these

models can adopt a perfect type I β-turn structure as revealed by
X-ray crystallography [10].) They show strong resemblance to the
conformational equilibrium described above for the linear model
systems in water. By using solvents with lower dielectric constants
(e.g. ACE), the type II β-turn contribution decreases, most likely
due to the enlargement of conformational motion. This is nicely
monitored by the increase of the ‘Rnd’ component: 27 → 48%
(Table 1). (vi) The further enlargement of the ring size further
increases the backbone flexibility of pseudo-octapeptides of the
following kind; cyclo[Xxx-Yyy-Aca-Xxx-Yyy-Aca]. Once again, ECD
data with the help of CCA+ provide a quantitative measure of it.
Because of the increased internal mobility, the relative contribution
of the ‘Rnd’ term (first pure ECD component) is the highest (∼45%).
In conclusion, for the presently analyzed β-turn models the effect
of solvent, even as dissimilar as H2O and ACE, is minor. The
backbone conformational equilibrium shifts but only moderately.
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On the contrary, the ring size and the amino acid composition
of the models have a more significant influence on their β-turn
content. Because of the ECD spectral deconvolution, it became
evident that the secondary structure content correlates well with
the NMR data and always present conformational mixtures [35,36].
This is in fact the very reason, why in spite of all efforts the
reference compounds of the above β-turn types could not yet be
synthesized. Nevertheless, by using the CD spectra of the above
models, the deconvolution of the spectral ensemble by CCA+
provides a relatively accurate and plausible description of these
inherent flexibility β-turn models.

In our third example, the ion type and concentration-induced
structure modifying effect on peptide fold is quantitatively
analyzed by CD. Selected four-, six-, and eight-membered cyclic-
pseudopeptides were further analyzed in the presence of Ca2+
and Al3+ ions. The CCA+ deconvolution of a total of 73 ECD
curves recorded for six models at different ion type and ratios
(Tables 2 and 3) resulted in the following global picture. Based on
the shape of the ‘base curves’ (Figure 8), the fourth component

shows resemblance to a class C-type ECD spectrum [41]. Adhering
to Woody’s terminology [41], the first component looks as class
B type ECD spectrum, commonly assigned to a type II β-turn.
(This spectrum has a negative maximum at around 223 nm
with a positive peak around 205 nm.) The second base curve,
composed from a single negative band around 204 nm, is usually
associated with non-typical backbone conformational types. The
interpretation of the third ‘base curve’ is the least conventional.
In a previous analysis of linear peptides, in the presence of a high
calcium/peptide ratio a similar ECD spectrum was recorded [41]
and called a class ‘K’ spectrum [42]. However, no explicit secondary
structure type was associated with the latter type of base curve.
By analyzing their conformational weights (Tables 2 and 3) two
following general conclusions can be drown.

In the case of the above, carefully selected cyclopeptide models
the presence of Ca2+ or Al3+ ions does not induce any dramatic ECD
spectral changes. This is because they do not have any specific Ca2+
or Al3+ ion binding sites (neither Glu nor Asp residues are incorpo-
rated). However, in some cases, we can pick up considerable spec-

Table 2. The analysis of 32 ECD spectra of six different cyclopeptides recorded at different Ca2+ ion per peptide (IPP) ratios

Peptide Ca2+ IPPa
Comp.1 class B type II

β-turn % Comp.2 non-typ.% Comp.3 class K %
Comp.4 class C-type I

β-turn %

cyclo[(δ)Ava-Gly-Pro-Ser(OH)-Gly] 0 11.1 4.8 52.2 32

0.33 9.6 3.2 51.8 35.4

0.66 9.1 2.9 51.5 36.5

1 9.4 3.2 48.6 38.8

1.5 9.7 3.1 45.2 42

2 9.7 3 43.9 43.5

cyclo[(δ)Ava-Gly-Pro-Ser(OtBu)-Gly] 0 15.8 8.9 16.1 59.2

0.5 13.7 15.3 17.6 53.5

1 9.7 19.5 15.1 55.8

2 3.4 37.3 24.7 34.7

cyclo[(δ)Ava-Gly-Pro-Thr(OH)-Gly] 0 11.5 5.2 51.1 32.2

0.5 9.8 3.7 51.2 35.3

1 8.9 4.4 49.7 37

1.5 9.3 3.5 44.8 42.5

2 9.4 3.4 43.6 43.6

3 9.3 3.3 43.3 44.1

cyclo[(δ)Ava-Gly-Pro-Thr(OtBu)-Gly] 0 11 4.8 53.8 30.4

0.33 10.2 4 53.4 32.4

0.66 10 4 53.1 32.8

1 9.7 3.1 47.9 39.3

2 9.3 2.3 44.3 44.1

3 9.4 2.9 43.8 43.8

cyclo[(ε)Aca-Pro-Ala] 0 30.2 0.1 1.1 68.7

0.5 62.9 4.2 5.3 27.6

1 83.5 1.6 9.5 5.4

1.5 88.8 0.2 11 0.1

2 89 0 10.9 0

cyclo[(ε)Aca-Pro-Ala-(ε)Aca-Pro-Ala] 0 10.6 5.1 44.4 39.9

0.5 6.3 9.8 41.4 42.5

1 1.2 16.3 39.2 43.2

1.5 0 18.2 41.3 40.5

2 0.1 18.4 41.5 40

Deconvolution was completed for a total of 73 ECD curves (Ca2+ plus Al3+ data/Table 3/) resulting in pure ECD curves as follows: First component:
class B spectrum; second component: non-typical; third component: class K spectrum [42]; fourth component: class C spectrum [41] (Figure 8).
a Cation-binding study using Ca2+ concentration in the range of 0–3 ion/peptide ratio.
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Table 3. The joint analysis of 41 ECD spectra recorded at different Al3+ ion per peptide (IPP) ratios

Peptide Al3+ IPPa
Comp.1 class B
type II β-turn % Comp.2 non-typ.% Comp.3 class K %

Comp.4 class C-type I
β-turn %

cyclo[(δ)Ava-Gly-Pro-Ser(OH)-Gly] 0 11.1 3.3 53.5 32.1

0.33 9.9 5.4 54.5 30.3

0.66 8.8 6.9 58.8 25.5

1 9.9 4.5 59.2 26.4

1.5 10.8 3.9 59.2 26

2 11.7 3.5 59.6 25.2

2.5 13.1 3.1 60.4 23.4

3 13.9 3 61.4 21.6

3.5 13.9 2.2 62.4 21.5

4 14.1 2 62.4 21.5

cyclo[(δ)Ava-Gly-Pro-Ser(OtBu)-Gly] 0 4.5 36.9 29 29.6

0.5 0 61.9 0 38.1

1 0 66.4 15.9 17.7

2 10.5 62 27.5 0

4 15.2 43.7 39 2

6 16.5 28.9 54.7 0

cyclo[(δ)Ava-Gly-Pro-Thr(OH)-Gly] 0 11.5 4.5 51.4 32.7

0.5 11.2 2.1 56.8 29.9

1 12 2.7 61.3 24

1.5 13.6 1.4 63.3 21.7

2 14.7 0 66.8 18.6

3 13.6 0.2 66.2 20

cyclo[(δ)Ava-Gly-Pro-Thr(OtBu)-Gly] 0 11 4.2 54.2 30.6

0.33 9.8 4.8 53.9 31.5

0.66 10 3.7 54.5 31.8

1 10.4 4.6 59.7 25.2

1.5 11.7 3.3 61.5 23.5

2 12.7 1.1 64.2 22

2.5 13.3 0.4 66.1 20.2

3 13.4 0.6 66.5 19.6

cyclo[(ε)Aca-Pro-Ala] 0 25.8 0 0 74.2

0.5 47.9 10.1 1.4 40.6

1 53.3 16.4 0 30.4

1.5 55 11.9 9.3 23.8

2 53.3 11.3 12.5 22.9

cyclo[(ε)Aca-Pro-Ala-(ε)Aca-Pro-Ala] 0 10.3 5 43.6 41.1

0.5 9.5 11.3 36.7 42.5

1 7.8 18.6 29.4 44.3

1.5 7.3 21.1 27.5 44.1

2 7.2 22.7 27.3 42.7

2.5 8.1 23.8 26.9 41.2

Deconvolution was completed for a total of 73 ECD curves (Ca2+/Table 2/plus Al3+ data) resulting in pure ECD curves as follows: First component:
class B spectrum; second component: non-typical; third component: class K spectrum [30]; fourth component: class C spectrum [29] (Figure 8).
a Cation-binding study using Al3+ concentration in the range of 0–6 ion/peptide ratio.

tral shifts as discussed below. In general, ignoring the few extremes,
excess of Ca2+ ion has limited influence on the conformation equi-
librium of these models as shown by the percentage changes.
The weight of the first component (type II β-turn) is around 10%
while that of the second pure component (non-typical) remains
below 6%. Furthermore, the relative ratio of the so-called ‘class K’
spectrum varies around 45 ± 5%, while that of the fourth compo-
nent (type I (III) β-turn) is around 35 ± 5%. If we perform a similar
type of analysis for Al3+ ions, unlike for Ca2+ a gentle but signifi-
cant ion concentration-induced spectral shift is monitored. In fact,

the contribution of the first component (type II β-turn) increases
slightly, while that of the second component (atypical) remains
constant. Furthermore, the content of the third pure component
(class K) increases from 50 up to 65%. Note that Al3+ ions have
an opposite effect than Ca2+, as picked up by the conformational
weight changes of ‘class K’ pure ECD component curve.

More interestingly, by looking at the extremes, there are two
types of models, which show an unexpectedly large ion-induced
conformational-equilibrium shift. The tetrapeptide (cyclo[(ε)Aca-
Pro-Ala]) shows a dramatic structural change when we increase
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the Ca2+ ion concentration (Figure 9 and Table 2). Note that the
type II β-turn spectral component will be dominant at <1.0 IPP
Ca2+ ion ratio. In fact, at IPP = 2.0 the contribution of the first pure
component is as high as 90%. However, for the very same model
Al3+ ion (Figure 10 and Table 3) induces a similar but markedly
smaller change. The spectral contribution of the type II β-turn
remains around 50–55%. For both types of ion, as the type II
β-turn content increases with ion strength, the type I β-turn ratio
decreases. This ion type-induced β-turn type switching is perhaps
coupled to the difference between their ion radii.

With respect to ion-induced conformational shift, another
interesting model is that of cyclo[(δ)Ava-Gly-Pro-Ser(OtBu)-Gly].
In the presence of Al3+ ions (Figure 11) the second (non-typical)
spectral component contribution has a maximum at 1 IPP with
a high value of 66.4%. However, the same spectral feature is not

observed for the Ser(OH) containing model! Thus, the unusual
conformational behavior is attached here to the presence of the
bulky tert-butyloxi (OtBu) side-chain protecting group (Figure 12).
Furthermore, the very same model having Thr instead of Ser
behaves also differently. In summary, changes of ion type and con-
centration can have a higher impact on the CD of a peptide, then
the effect induced by changing the solvents. In addition, spectral
features strongly change with the ring size of the model, with its
constitution, and with the presence of the protecting groups.

Conclusion

The peptide conformational studies presented here have shown
the versatile nature of the CCA+ program. The real power of this
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algorithm was presented here, when temperature-, pH-, and/or
solvent dependent ECD data sets were quantitatively analyzed.
As the algorithm is independent from the spectroscopic methods
in use for data acquisition, it can readily be applied for VCD,
IR, or UV-VIS data analysis. Undoubtedly, ECD spectroscopy can
detect and the applied deconvolution method can express in a
quantitative manner the inherent conformational properties of
oligo- and polypeptides.
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formation in aqueous solution and in the presence of
trifluoroethanol: A 1H and 13C nuclear magnetic resonance
conformational study of designed peptides. Biopolymers 2005; 79:
150–162.
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36 Perczel A, Hollósi M, Sándor P, Fasman GD. The evaluation of type-
I and type-II beta-turn mixtures – circular dichroism, NMR and
molecular dynamics studies. Int. J. Pept. Protein Res. 1993; 41:
223–236.

37 Savory J, Herman MM, Ghribi O. Mechanisms of aluminum-induced
neurodegeneration in animals: Implications for Alzheimer’s disease.
J. Alzheimers Dis. 2006; 10: 135–144.

38 Poschner BC, Reed J, Langosch D, Hofmann MW. An automated
application for deconvolution of circular dichroism spectra of small
peptides. Anal. Biochem. 2007; 363: 306–308.

39 Perczel A, FasmanGD. Effect of spectral window size on circular-
dichroism spectra deconvolution of proteins. Biophys. Chem. 1993;
48: 19–29.

40 Torres-Roldán RL, García-Casco A, García-Sánchez PA. CSpace: An
integrated workplace for the graphical and algebraic analysis of

J. Pept. Sci. 2009; 15: 738–752 Copyright c© 2009 European Peptide Society and John Wiley & Sons, Ltd. www.interscience.com/journal/psc



7
5

2
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